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1. INTRODUCTION

In a recent paper by Bala Subrahmanyam and Sujith [1], a theoretical study of
axisymmetric vibrations of solid circular and annular membranes with continuously
varying density has been presented continuing the works of previous investigations [2–7].
Exact solutions are found for two families of functional dependencies of the membrane
density with respect to the cylindrical radial co-ordinate [1]. One family is for the case
where the density r1 varies as

r1ðrÞ ¼ r0 f1ðrÞ; f1ðrÞ ¼
A

r2
þ Brt þ Crm; ð1Þ

while the other family corresponds to the case where the density r2 varies as

r2ðrÞ ¼ r0 f2ðrÞ; f2ðrÞ ¼
½1þ a logðrÞ�s

r2
; a=0: ð2Þ

In the present work, a quasi-analytical approach is presented so as to find
eigenfrequencies and eigensolutions (mode displacements) in the general case where the
density rðrÞ can be written as an infinite power series expansion in the radial co-ordinate,
i.e.,

rðrÞ ¼ r0 f ðrÞ; f ðrÞ ¼
X1
n¼0

fnrn: ð3Þ

Since any C1 function has a Taylor series expansion, membrane densities which are C1

functions of the radial co-ordinate are covered by the present formulation. In addition, the
most relevant density variations, if not all, can be well approximated by a polynomial/
power series expansion in the radial co-ordinate. In the latter case, the present formulation
can also be used to find membrane solutions.

2. THEORY

In the following, an exact method is described so as to obtain the displacement WðrÞ for
the axisymmetric vibrational modes in the case of a solid circular membrane or an annular
membrane of outer radius R and inner radius R0: The exact power series solution method,
proposed in this letter, does not impose any requirements on the functional form of the
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membrane density except that it can be written as an infinite power series in the radial co-
ordinate r: The governing differential equation for the displacement WðrÞ is [1]

d2W

dr2
þ 1

r

dW

dr
þ O2f ðrÞWðrÞ ¼ 0; 04r04r41; ð4Þ

where

rðrÞ ¼ r0 f ðrÞ; f ðrÞ ¼
X1
n¼0

fn1r n; ð5; 6Þ

r0 ¼
R0

R
; O ¼ oR

ffiffiffiffiffiffiffiffiffiffiffi
r0=S

p
ð7; 8Þ

and S is the tension per unit length. The coefficients fn1 are not restricted but f ðr ¼ 1Þ ¼P1
n¼0 fn1 must be a convergent series ð

P1
n¼0 fn151Þ: In order to handle the problem of

annular and solid circular membranes it is convenient to introduce the variable

rn ¼ 1� r ð9Þ

and equation (4) becomes

d2W

dr*2
þ 1

ðrn � 1Þ
dW

drn
þ O2f ðrnÞWðrnÞ ¼ 0; 04rn41� r0; ð10Þ

where

f ðrnÞ ¼
X1
n¼0

fn2r* n 	
X1
n¼0

fn1rn ¼ f ðrÞ: ð11Þ

The boundary conditions for the solid circular membrane is

dW

dr
ðr ¼ 0Þ ¼ �dW

drn
ðrn ¼ 1Þ ¼ 0; ð12Þ

Wðr ¼ 1Þ ¼ Wðrn ¼ 0Þ ¼ 0; ð13Þ

while for the annular membrane, the boundary conditions become

Wðr ¼ r0Þ ¼ Wðrn ¼ 1� r0Þ ¼ 0; ð14Þ

Wðr ¼ 1Þ ¼ Wðrn ¼ 0Þ ¼ 0: ð15Þ

Next, the Frobenius method [8] is employed so as to solve equation (10) and the
associated boundary conditions. The Frobenius method is based on the assumption that
W can be written as a series expansion in rn:

WðrnÞ ¼
X1
n¼0

anr*nþk; ð16Þ

where k is unspecified (in general, at this point, k can be any real constant). Insertion of
equations (11) and (16) into equation (10) [after multiplying the latter equation by
ðrn � 1Þ] and demanding that Wðrn ¼ 0Þ ¼ 0 as well as a0=0 gives

k ¼ 1; ð17Þ

if terms proportional to r*k�2 are equated (corresponding to n ¼ 0). Again, employing the
identity principle for infinite power series to terms proportional to r* n leads to the



LETTERS TO THE EDITOR 983
following recursion formula:

a0 ¼ 1; a1 ¼ 1
2 a0;

a2 ¼ 2
3

a1 � 1
6
O2 a0 f02; a3 ¼ 3

4
a2 þ 1

12
O2 a0 f02 � 1

12
O2ða1 f02 þ a0 f12Þ;

anþ1 ¼
n þ 1

n þ 2
an þ O2 1

ðn þ 1Þðn þ 2Þ
Xn�2

m¼0

an�2�m fm2

� O2 1

ðn þ 1Þðn þ 2Þ
Xn�1

m¼0

an�1�m fm2; n53: ð18Þ

Next, the possible O values must be determined by use of the second boundary condition.
In the solid membrane case, the discrete set of possible O values are those for which

dW

dr
ðr ¼ 0Þ ¼ �dW

drn
ðrn ¼ 1Þ ¼ 0; ð19Þ

i.e.,

X1
n¼0

anðn þ 1Þ ¼ 0; ð20Þ

where the last equation follows from equations (16), (17), and (19).
Similarly, in the annular membrane case, the discrete set of possible O values are those

for which

Wðr ¼ r0Þ ¼ Wðrn ¼ 1� r0Þ ¼
X1
n¼0

anð1� r0Þnþ1 ¼ 0; ð21Þ

employing equations (14), (16), and (17). By solving equations (18) and (20) [or equation
(21)] numerically, a set of discrete O values (	 On) are found and so a discrete set of Wn

solutions have been determined. Each of the Wn solutions represents a vibrational mode of
the axisymmetric membrane.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the Frobenius infinite power series expansion method is applied to three
different mass density profiles of the membrane.

3.1. EXAMPLE 1

Consider first the case where

f ðrÞ ¼ 1þ ar2; ð22Þ
which has been studied in reference [1] analytically and numerically in reference [5]. In
Table 1, values of O corresponding to the fundamental and second frequency coefficients
are given for the case a ¼ 1

2
: The agreement with references [1, 5] is excellent. The same

conclusion is reached for other a values.

3.2. EXAMPLE 2

In Table 2, data for the case

f ðrÞ ¼ �r2 logðrÞ; ð23Þ



Table 1

Calculated eigenfrequencies corresponding to the membrane density variation f ðrÞ ¼ 1þ ar2

considered in example 1. The first column is the value r0 of the inner radius for annular

membranes [r0 ¼ 0 for solid circular membranes]. The second and third columns are the

eigenfrequencies O for the fundamental and second-vibrational mode respectively

r0/mode 1 2

0 2
2819 5
1412
0
1 3
0735 6
3195
0
2 3
4969 7
1061
0
3 3
9943 8
0659
0
4 4
6321 9
3186
0
5 5
5071 11
0525
0
6 6
8050 13
6366
0
7 8
9547 17
9269
0
8 13
2394 26
4893
0
9 26
0725 52
1498

Table 2

Calculated eigenfrequencies corresponding to the membrane density variation f ðrÞ ¼
�r2 logðrÞ considered in example 2. The first column is the value r0 of the inner radius for

annular membranes [r0 ¼ 0 for solid circular membranes]. The second and third columns are

the eigenfrequencies O for the fundamental and second-vibrational mode respectively

r0/mode 1 2

0 6
5809 16
6039
0
1 8
3526 18
8578
0
2 9
4279 20
6835
0
3 10
8386 23
3231
0
4 12
8513 27
2916
0
5 15
9230 33
5169
0
6 21
0259 44
0042
0
7 30
6690 63
9557
0
8 53
5231 111
3861
0
9 144
1913 299
7721
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are shown. This particular example is not covered by the method proposed in reference [1].
The function f given by equation (23) can be written as an infinite power series expansion
in rn as follows:

�r2 logðrÞ ¼ � ð1� rnÞ2 logð1� rnÞ

¼ ð2rn � 1� r*2Þ �rn � r* 2

2
� r*3

3
� 
 
 


� �

¼
X1
n¼0

r*nþ1

n þ 1
þ
X1
n¼0

r* nþ3

n þ 1
� 2

X1
n¼0

r*nþ2

n þ 1
: ð24Þ

The values given in Table 2 correspond to the first two O solutions fulfilling the relevant
boundary conditions [either equations (12) and (13) or equations (14) and (15)].
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3.3. EXAMPLE 3

Finally, consider the case

f ðrÞ ¼ 1þ ar þ br2 þ gr3; ð25Þ

where a; b; and g are constants. The expression for f in terms of rn co-ordinates becomes

f ðrÞ ¼ 1þ aþ bþ gþ ð�a� 2b� 3gÞrn þ ðbþ 3gÞr*2 � gr*3: ð26Þ
Table 3

Calculated eigenfrequencies corresponding to the membrane density variation f ðrÞ ¼ 1þ
ar þ br2 þ gr3 considered in example 3. Four cases (I)–(IV) are considered as described in

the main text. The first column is the value r0 of the inner radius for annular membranes

[r0 ¼ 0 for solid circular membranes]. The second, third, fourth, and fifth columns are the

eigenfrequencies O for the fundamental vibrational mode in cases (I), (II), (III), and (IV)
respectively

r0/case I II III IV

0 1
9211 1
8655 2
0607 1
7911
0
1 2
4955 2
4155 2
6643 2
2851
0
2 2
7950 2
7045 2
9703 2
5394
0
3 3
1459 3
0457 3
3244 2
8374
0
4 3
5954 3
4860 3
7747 3
2204
0
5 4
2123 4
0942 4
3902 3
7480
0
6 5
1277 5
0016 5
3027 4
5338
0
7 6
6451 6
5115 6
8156 5
8408
0
8 9
6717 9
5314 9
8366 8
4549
0
9 18
7424 18
5963 18
9008 16
3035

Table 4

Calculated eigenfrequencies corresponding to the membrane density variation f ðrÞ ¼ 1þ
ar þ br2 þ gr3 considered in example 3. Four cases (I)–(IV) are considered as described in

the main text. The first column is the value r0 of the inner radius for annular membranes

[r0 ¼ 0 for solid circular membranes]. The second, third, fourth, and fifth columns are the

eigenfrequencies O for the second vibrational mode in cases (I), (II), (III), and (IV)
respectively

r0/case I II III IV

0 4
2669 4
1704 4
5027 3
9558
0
1 5
1273 4
9943 5
4372 4
7065
0
2 5
6810 5
5249 6
0163 5
1764
0
3 6
3556 6
1766 6
7064 5
7478
0
4 7
2365 7
0352 7
5950 6
4959
0
5 8
4574 8
2346 8
8168 7
5371
0
6 10
2787 10
0360 10
6336 9
0976
0
7 13
3058 13
0450 13
6517 11
7022
0
8 19
3529 19
0761 19
6865 16
9225
0
9 37
4893 37
1986 37
8080 32
6129
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In Table 3, the fundamental frequency coefficient values are given for the four cases (I)
a ¼ 1; b ¼ 0; g ¼ 1; (II) a ¼ 1; b ¼ 1; g ¼ 0; (III) a ¼ 0; b ¼ 1; g ¼ 1; (IV) a ¼ 1; b ¼ 1;
g ¼ 1:

In Table 4, the second frequency coefficient values of O are given for the same four cases
(I)–(IV).

As expected, the natural frequency O increases with increasing r0 value in all examples
considered.

4. CONCLUSIONS

A general quasi-analytical model based on the Frobenius power series expansion
method is described so as to handle vibrations of solid circular and annular membranes
with continuously varying density. The method given in this work serves as an extension to
previous analytical works [1–7] as it can be used to handle any density variation which can
be represented as an infinite power series expansion in the radial co-ordinate. Natural
frequency results are finally computed for three examples of varying membrane density.
One of the three examples has been considered in references [1, 5] as well and excellent
agreement between the present results and references [1, 5] is obtained for this particular
example.
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